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April Dates
Sunday Monday Tuesday Wednesday Thursday Friday Saturday

April 1 2 3 4
GANs

5 6

7 8 9
VAEs

10
Discussion

11
Diffusion Models

12 13

14 15 16
Graph Neural Nets
(VizWiz Leaders 
Share)

17
Discussion

18
Reinforcement 
Learning

19 20

21 22 23
TBD/Overflow
(JEPA Models)

24
Discussion

25
★ Project 
Presentations 1 ★ 

26 27

28 29 30
★ Project 
Presentations 2 ★ 

May 1
Discussion??

2
Study Period

3
Study Period

4

5 6
Final Exams

7
Final report
& Repo **

8 9 10 11

2** Might be earlier. Depends on when grades are due.



Project Presentations

April 25 – 75 minutes
• Slot 1
• Slot 2
• Slot 3
• Slot 4
• Slot 5
• Slot 6
• Slot 7
• Slot 8

April 30 – 75 minutes
• Slot 9
• Slot 10
• Slot 11
• Slot 12
• Slot 13
• Slot 14
• Slot 15
• Slot 16
• Slot 17

Format:
≤ 3 minutes screencast/video
≤ 2 minutes additional presentation
~2 minutes Q&A

Will post slot assignments tonight!!
Final project info updated on Gradescope and website.
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Graph Neural Networks

Neural architectures that process graphs.

Three challenges:
1. Variable topology
2. Size (billions of nodes)
3. Single monolithic graph
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Topics

• Basic definition and examples
• Graph representation
• Properties of Adjacency Matrix
• Graph neural network, tasks and loss functions
• Graph convolutional network
• Graph & Node classification
• Edge graphs
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Graph (Network)

• general structure composed of nodes 
(vertices) and edges (links)

• edges can be undirected or directed

• a graph with directed edges and no cycles 
(no loops) is called directed acyclic graph 
(DAG)
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node or vertex

edge
or link

undirected

directed



Directed Example – Feed Forward Network
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Directed Example – Bayesian Graphical Model
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Preliminaries: Bayesian Models

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

N

z

x

!(#)

!(%|#)

prior – prior knowledge or 
belief about z

likelihood – probability 
of a sample given z
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From lecture 18 – Variational Autoencoders



Undirected Examples
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road networks
nodes: physical locations or 
landmarks
edges: connecting roads

chemical molecules
nodes: atoms
edges: chemical bonds

electrical circuits
nodes: components or junctions
edges: wires/electrical connections



Examples
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social networks
nodes: people
edges: friendships
(undirected)

science literature
nodes: papers
edges: citations
(acyclic directed)

knowledge graph
nodes: objects
edges: named relationship
(cyclic directed)



Example – Geometric Point Cloud
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nodes: positions in 3D space (vertex in 3D graphics)
edges: connections to nearby points
(undirected)

https://en.wikipedia.org/wiki/Vertex_(computer_graphics) 

https://en.wikipedia.org/wiki/Vertex_(computer_graphics)


Example – Scene Graph 
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hierarchical graph showing relationship between objects in a 3D scene
 
nodes: composite graphs or objects in 3D space
edges: connections to nearby points
(undirected)

Fernandez-Madrigal and Gonzalez, "Multi-hierarchical graph search," 2002
Armeni et al, “3D Scene Graph: A structure for unified semantics, 3D space and camera,” 2020? 
Wald et al,  “Learning 3D Semantic Scene Graphs with Instance Embeddings,” 2022



Other examples

• Wikipedia – nodes are articles, edges are hyperlinks between articles
• Computer programs – nodes are syntax tokens, edges are 

computation between tokens (tensor graph from Gradients lecture)
• Protein interactions – nodes are proteins, edges exist where two 

proteins interface
• Set or list – every element is connected to every other element
• image – each pixel is a node with edges to the eight adjacent pixels
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Graph representation
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Example undirected graph with 6 nodes



Graph representation – node embedding
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Example undirected graph with 6 nodes

Information about a node is stored in a node 
embedding



Graph representation – edge embedding
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Example undirected graph with 6 nodes

Information about a node is stored in a node 
embedding

Information about an edge is stored in an edge 
embedding



Graph representation – adjacency matrix
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Assume we have 𝑁 nodes

The graph connections can be 
represented by an adjacency matrix

Where a value of 1 at (𝑚, 𝑛) represents 
a connection between nodes 𝑚 and 𝑛.

For undirected graphs the matrix is 
always symmetric about the diagonal

Diagonal is zero – no edge to itself

Can be very sparse



Graph representation – node data matrix
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All the node data in the form of 
node embeddings can represented 
by a Node data matrix

Where 𝐷 is the dimension of the 
note embedding and

𝑁 is the number of nodes



Graph representation – edge data matrix
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Similarly, all the edge embedding information can be 
stored in an Edge data matrix, where:
𝐷!  is the dimension of the edge embedding vector and  
𝐸 is the number of edges
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• Graph neural network, tasks and loss functions
• Graph convolutional network
• Graph & Node classification
• Edge graphs
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Adjacency Matrix
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Assume we have an 8-node undirected graph



Adjacency Matrix
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Adjacency matrix for this graph.



Adjacency Matrix
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adjacency matrix

We can one hot encode 
representation of node 6



Adjacency Matrix
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If we pre-multiply the one-hot encoded 
data node vector x by adjacency matrix A 
we get the 6th column of A indicating direct 
connections to other nodes

One-hot encoding vector of all 
nodes directly connected node 6



Adjacency Matrix
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Graph showing all nodes that can 
be reached in exactly 2 steps.

If we pre-multiply again by A, we get a 
vector showing the number of times we can 
get to each node in 2 steps.



Adjacency Matrix
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Pre-multiplying x by A twice is equivalent to the matrix A2

Shows how many times you can get from node m to node 
n in 2 steps



Adjacency Matrix
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When you raise the adjacency matrix to the power of 
L,

the entry at position (m,	n)	of AL contains the number 
of unique walks of length 𝐿 from node 𝑛 to node 𝑚

Note: this is not the same as the number of unique 
paths since it includes routes that visit the same node 
more than once. 

a non-zero entry at position (𝑚, 𝑛)	indicates that the 
distance from 𝑚 to 𝑛 must be less than or equal to 𝐿.

Example for 𝐿 = 2



Permutation of node indices
Since node indexing is arbitrary, we can permute the node indices 
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𝐗 =
1 2 3 4
5 6 7 8
	9 10 11 12

𝐀 =

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

1 2

3

4

1
5
9

2
6
10

3
7
11

4
8
12

(1						2							3							4)

node data adjacency matrix



Permutation of node indices
Since node indexing is arbitrary, we can permute the node indices 
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Permute the columns of the 
Node data matrix

Permute both the rows and 
column of the Adjacency matrix

We can express this  
mathematically with a 
permutation matrix, P

𝐏 =

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

𝐗 =
1 2 3 4
5 6 7 8
	9 10 11 12

𝐗- = 𝐗𝐏 =
3 4 2 1
7 8 6 5
	11 12 10 9

𝐀 =

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

1 2

3

4

1
5
9

2
6
10

3
7
11

4
8
12

(3				4				2					1)

(1						2							3							4)

New: (1							2							3						4)
Old:   (3							4							2						1)

𝐀- = 𝐏𝐓𝐀𝐏 =

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

node data adjacency matrix

4 3

1

2

1
5
9

2
6
10

3
7
11

4
8
12
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Graph Neural Network
• A graph neural network is a model that takes the node embeddings X and 

the adjacency matrix A as inputs and passes them through a series of 𝐾 
layers. 
• The node embeddings are updated at each layer to create intermediate 

“hidden” representations 𝐇𝐾 before finally computing output embeddings 
𝐇𝐾. 
• At the start of this network, each column of the input node embeddings 𝐗 

just contains information about the node itself. 
• At the end, each column of the model output 𝐇𝐾 includes information 

about the node and its context within the graph. 
• This is like word embeddings passing through a transformer network. These 

represent words at the start but represent the word meanings in the 
context of the sentence at the end.
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Graph Level Tasks

Determine 
• class categories, e.g. molecule is poisonous 
• regression values, e.g. molecure boiling and freezing point
based on graph structure and node embeddings
For graph-level tasks, the output node embeddings are combined (e.g., 
by averaging), and the resulting vector is mapped via a linear 
transformation or neural network to a fixed-size vector
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Graph level classification
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Binary Classification: Pr 𝑦 = 1 𝐗, 𝐀 = sigmoid[𝛽@ + 𝜔@𝐇@𝟏	/𝑁] 

𝐇@

𝜔!is 1×𝐷 row vector
𝛽/  is  scalar

𝐇/  is the output embedding matrix 

𝟏 is the output embedding matrix 

Mean pooling

multi-class 
classification



Node level binary classification
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Pr 𝑦(D) = 1 𝐗, 𝐀 = sigmoid[𝛽@ + 𝜔@𝐡@
(D)] 

𝐡/
(1)is the output embedding vector node for 𝑛 



Edge prediction
Predict whether edge should exist or not.
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Pr 𝑦(FD) = 1 𝐗, 𝐀 = sigmoid[𝐡@
F G𝐡@

(D)] 
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Graph convolutional network

These models are convolutional in that they update each node by 
aggregating information from nearby nodes. 
As such, they induce a relational inductive bias (i.e., a bias toward 
prioritizing information from neighbors).
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A function 𝐹[⋅]  with parameters 𝜙" that 
takes the node embeddings and 
adjacency matrix and outputs new node 
embeddings



Equivariance and Invariance

Every layer should be equivariant to index permutations

And for node classification and edge prediction the output should be 
invariant to index permutations
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𝐇HIJ𝐏 = 𝐅[𝐇H𝐏, 𝐏G𝐀𝐏, 𝜙H]

𝑦 = sigmoid 𝛽@ + 𝜔@𝐇@𝟏/𝑁	 = sigmoid 𝛽@ + 𝜔@𝐇@𝐏𝟏/𝑁	



Example Graph Convolution Network (GCN) layer
Aggregate information from neighboring nodes

agg 𝑛, 𝑘 = '
*∈,-[.]

𝐡/
(*)

where ne[𝑛] returns the set of indices of the neighbors of node 𝑛.
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Example Graph Convolution Network (GCN) layer
Aggregate information from neighboring nodes

agg 𝑛, 𝑘 = '
*∈,-[.]

𝐡/
(*)

where ne[𝑛] returns the set of indices of the neighbors of node 𝑛.

Then a linear transform to the current node vector and the aggregate 
for the current node and add a bias.

𝐡/23
(.) = 𝐚 𝛽/ + Ω/ ⋅ 𝐡/

. + Ω/ ⋅ agg[𝑛, 𝑘]
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Graph convolution layers
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Input 1st Layer k+1st Layer



Example Graph Convolution Network (GCN) layer
We apply the following equation

𝐡/23
(.) = 𝐚 𝛽/ + Ω/ ⋅ 𝐡/

. + Ω/ ⋅ agg[𝑛, 𝑘]

to the entire node hidden layers matrix, 𝐇/, by noting that 𝐇/𝐀 
produces a matrix where the nth column is agg[𝑛, 𝑘].
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Example Graph Convolution Network (GCN) layer
We apply the following equation

𝐡/23
(.) = 𝐚 𝛽/ + Ω/ ⋅ 𝐡/

. + Ω/ ⋅ agg[𝑛, 𝑘]

to the entire node hidden layers matrix, 𝐇/, by noting that 𝐇/𝐀 
produces a matrix where the nth column is agg[𝑛, 𝑘].

45

Note that this is (1) equivariant to permutations, (2) handles arbitrary number of 
neighbors, (3) exploits graph structure and (4) share parameters
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Graph classification example

We can put it all together and add a sigmoid layer

47
You’ll be implementing this in notebook 13.2.

For classification on molecules,

𝑋 ∈ ℝ334×6 : one hot encoding of 118 
elements

Ω7 ∈ ℝ8×334: convert to 𝐷-dimensional 
embeddings

𝛽/ : is a scalar

𝜔/ : a 1×𝐷 parameters row vectorMean pooling



Inductive             vs.   Transductive
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semi-supervised learning: train with 
the labeled nodes, then run 
inference to determine label for 
unlabeled nodes

supervised learning: train with the 
labeled graphs and then run 
inference on the unlabeled (test) 
graphs



Node classification example
Assume transductive binary node classification with 
millions of nodes, partially labeled.

Same network body as graph classification, but 
different head:

𝐟 𝐗, 𝐀,𝚽 = sigmoid[𝛽4𝟏5 + 𝝎4𝐇4]

No mean pooling. Output is 1×𝑁.
Train with binary cross-entropy loss on nodes with 
labels.
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source

https://images.app.goo.gl/bGW2qZ71dijEtWncA


Node classification example
Assume transductive binary node classification with 
millions of nodes, partially labeled.

Challenges:
1. memory limitations: need to store every node 

and hidden layer embedding during training
2. how to perform SGD with basically one batch!
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source

https://images.app.goo.gl/bGW2qZ71dijEtWncA


Solutions: Choosing batches for graphs

1. Choose random subset of nodes

2. Neighborhood sampling

3. Graph partitioning
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Batches: Random subset
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You can pick a random batch of labeled nodes at each 
training step.



Batches: Random subset
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𝐡9:3
(1) = 𝐚 𝛽9 + Ω9 ⋅ 𝐡9

1 + Ω9 ⋅ agg[𝑛, 𝑘]

Each node is dependent on the same node in the previous layer and its neighbors because of agg[]

Receptive Field



Batches: Random subset
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𝐡9:3
(1) = 𝐚 𝛽9 + Ω9 ⋅ 𝐡9

1 + Ω9 ⋅ agg[𝑛, 𝑘]

Each node is dependent on the same node in the previous layer and its neighbors because of agg[].

With many layers and dense connection, it can quickly expand to encompass every node.

Receptive Field



Neighborhood Sampling
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Random Sampling:

Use all the neighbors

Neighborhood Sampling:

Use max 𝑛 of the neighbors.

Here 𝑛 = 3.

Notebook 13.3



Graph Partitioning
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Disconnect edges of the original to create maximally 
connected disjoint subsets

Split into train, test and validation sets and train just like in the 
inductive setting.



Alternatives to Mean Pooling for Node Combinations
• Diagonal enhancement: current node is multiplied by (1 + 𝜖#), where 𝜖# is a learned scalar for 

each layer 

𝐇#$% = 𝐚 𝛽#𝟏& + 𝛀#𝐇#(𝐀 + (1 + 𝜖#)𝐈)
• Residual connections: Include the current node in the sum

𝐇#$% = 𝐚 𝛽#𝟏& + 𝛀#𝐇#𝐀) + 𝐇#
• Mean aggregation: take average instead of sum of neighbors

agg 𝑛 =
1

ne[𝑛]
E

'∈)*[,]

𝐡'

• Kipf normalization: downweight neighboring nodes with a lot of neighbors

agg 𝑛 = E
'∈)*[,]

ℎ'
ne[𝑛] ne[𝑚]

• Max pool aggregation: element-wise max of all neighbors to current node

agg 𝑛 = max
'∈)*[,]

[𝐡']

57UDL book sections 13.8.1 – 13.8.5



Aggregation by Attention

Weights depend on data at the nodes.
Apply linear transform to current node:

𝐇′! = 𝛽!𝟏" +𝛀!𝐇
Then the similarity 𝑠𝑚𝑛 of each transformed node embedding 𝐡′𝑚 to the 
transformed node embedding 𝐡′𝑛 is computed by concatenating the pairs, 
taking a dot product with a column vector 𝜙!  of learned parameters, and 
applying an activation function:

𝑠#$ = a 𝜙!"
𝐡′#
𝐡′$

𝐇!%& = 𝐚[𝐇'
! ⋅ Softmask 𝐒, 𝐀 + 𝐈 ]
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Graph Attention
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Regular graph convolution Graph attention



Graph Attention
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Regular graph convolution Graph attention

Transformer se
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Edge Graphs
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Handled by simple transformation from node graphs.



Next                                                 Feedback?

• Reinforcement Learning
• Joint Embedding Predictive Architecture
• Project Presentations
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Link

https://docs.google.com/forms/d/e/1FAIpQLSep8ThqLupjjyf4Uos5ChIuK8P-GrhEW5Im67vNzD8m8iNtMA/viewform

