
Graph Neural Networks
DL4DS – Spring 2024

DS598 B1 Gardos
 Prince, Understanding Deep Learning, Creative Commons CC-BY-NC-ND license. (C) MIT Press

Other Content Cited 1

https://udlbook.github.io/udlbook/

April Dates
Sunday Monday Tuesday Wednesday Thursday Friday Saturday

April 1 2 3 4
GANs

5 6

7 8 9
VAEs

10
Discussion

11
Diffusion Models

12 13

14 15 16
Graph Neural Nets
(VizWiz Leaders
Share)

17
Discussion

18
Reinforcement
Learning

19 20

21 22 23
TBD/Overflow
(JEPA Models)

24
Discussion

25
★ Project
Presentations 1 ★

26 27

28 29 30
★ Project
Presentations 2 ★

May 1
Discussion??

2
Study Period

3
Study Period

4

5 6
Final Exams

7
Final report
& Repo **

8 9 10 11

2** Might be earlier. Depends on when grades are due.

Project Presentations

April 25 – 75 minutes
• Slot 1
• Slot 2
• Slot 3
• Slot 4
• Slot 5
• Slot 6
• Slot 7
• Slot 8

April 30 – 75 minutes
• Slot 9
• Slot 10
• Slot 11
• Slot 12
• Slot 13
• Slot 14
• Slot 15
• Slot 16
• Slot 17

Format:
≤ 3 minutes screencast/video
≤ 2 minutes additional presentation
~2 minutes Q&A

Will post slot assignments tonight!!
Final project info updated on Gradescope and website.

3

Graph Neural Networks

Neural architectures that process graphs.

Three challenges:
1. Variable topology
2. Size (billions of nodes)
3. Single monolithic graph

4

Topics

• Basic definition and examples
• Graph representation
• Properties of Adjacency Matrix
• Graph neural network, tasks and loss functions
• Graph convolutional network
• Graph & Node classification
• Edge graphs

5

Topics

• Basic definition and examples
• Graph representation
• Properties of Adjacency Matrix
• Graph neural network, tasks and loss functions
• Graph convolutional network
• Graph & Node classification
• Edge graphs

6

Graph (Network)

• general structure composed of nodes
(vertices) and edges (links)

• edges can be undirected or directed

• a graph with directed edges and no cycles
(no loops) is called directed acyclic graph
(DAG)

7

node or vertex

edge
or link

undirected

directed

Directed Example – Feed Forward Network

8

Directed Example – Bayesian Graphical Model

9

Preliminaries: Bayesian Models

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019

N

z

x

!(#)

!(%|#)

prior – prior knowledge or
belief about z

likelihood – probability
of a sample given z

27

From lecture 18 – Variational Autoencoders

Undirected Examples

10

road networks
nodes: physical locations or
landmarks
edges: connecting roads

chemical molecules
nodes: atoms
edges: chemical bonds

electrical circuits
nodes: components or junctions
edges: wires/electrical connections

Examples

11

social networks
nodes: people
edges: friendships
(undirected)

science literature
nodes: papers
edges: citations
(acyclic directed)

knowledge graph
nodes: objects
edges: named relationship
(cyclic directed)

Example – Geometric Point Cloud

12

nodes: positions in 3D space (vertex in 3D graphics)
edges: connections to nearby points
(undirected)

https://en.wikipedia.org/wiki/Vertex_(computer_graphics)

https://en.wikipedia.org/wiki/Vertex_(computer_graphics)

Example – Scene Graph

13

hierarchical graph showing relationship between objects in a 3D scene

nodes: composite graphs or objects in 3D space
edges: connections to nearby points
(undirected)

Fernandez-Madrigal and Gonzalez, "Multi-hierarchical graph search," 2002
Armeni et al, “3D Scene Graph: A structure for unified semantics, 3D space and camera,” 2020?
Wald et al, “Learning 3D Semantic Scene Graphs with Instance Embeddings,” 2022

Other examples

• Wikipedia – nodes are articles, edges are hyperlinks between articles
• Computer programs – nodes are syntax tokens, edges are

computation between tokens (tensor graph from Gradients lecture)
• Protein interactions – nodes are proteins, edges exist where two

proteins interface
• Set or list – every element is connected to every other element
• image – each pixel is a node with edges to the eight adjacent pixels

14

Topics

• Basic definition and examples
• Graph representation
• Properties of Adjacency Matrix
• Graph neural network, tasks and loss functions
• Graph convolutional network
• Graph & Node classification
• Edge graphs

15

Graph representation

16

Example undirected graph with 6 nodes

Graph representation – node embedding

17

Example undirected graph with 6 nodes

Information about a node is stored in a node
embedding

Graph representation – edge embedding

18

Example undirected graph with 6 nodes

Information about a node is stored in a node
embedding

Information about an edge is stored in an edge
embedding

Graph representation – adjacency matrix

19

Assume we have 𝑁 nodes

The graph connections can be
represented by an adjacency matrix

Where a value of 1 at (𝑚, 𝑛) represents
a connection between nodes 𝑚 and 𝑛.

For undirected graphs the matrix is
always symmetric about the diagonal

Diagonal is zero – no edge to itself

Can be very sparse

Graph representation – node data matrix

20

All the node data in the form of
node embeddings can represented
by a Node data matrix

Where 𝐷 is the dimension of the
note embedding and

𝑁 is the number of nodes

Graph representation – edge data matrix

21

Similarly, all the edge embedding information can be
stored in an Edge data matrix, where:
𝐷! is the dimension of the edge embedding vector and
𝐸 is the number of edges

Topics

• Basic definition and examples
• Graph representation
• Properties of Adjacency Matrix
• Graph neural network, tasks and loss functions
• Graph convolutional network
• Graph & Node classification
• Edge graphs

22

Adjacency Matrix

23

Assume we have an 8-node undirected graph

Adjacency Matrix

24

Adjacency matrix for this graph.

Adjacency Matrix

25

adjacency matrix

We can one hot encode
representation of node 6

Adjacency Matrix

26

If we pre-multiply the one-hot encoded
data node vector x by adjacency matrix A
we get the 6th column of A indicating direct
connections to other nodes

One-hot encoding vector of all
nodes directly connected node 6

Adjacency Matrix

27

Graph showing all nodes that can
be reached in exactly 2 steps.

If we pre-multiply again by A, we get a
vector showing the number of times we can
get to each node in 2 steps.

Adjacency Matrix

28

Pre-multiplying x by A twice is equivalent to the matrix A2

Shows how many times you can get from node m to node
n in 2 steps

Adjacency Matrix

29

When you raise the adjacency matrix to the power of
L,

the entry at position (m,	n)	of AL contains the number
of unique walks of length 𝐿 from node 𝑛 to node 𝑚

Note: this is not the same as the number of unique
paths since it includes routes that visit the same node
more than once.

a non-zero entry at position (𝑚, 𝑛)	indicates that the
distance from 𝑚 to 𝑛 must be less than or equal to 𝐿.

Example for 𝐿 = 2

Permutation of node indices
Since node indexing is arbitrary, we can permute the node indices

30

𝐗 =
1 2 3 4
5 6 7 8
	9 10 11 12

𝐀 =

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

1 2

3

4

1
5
9

2
6
10

3
7
11

4
8
12

(1						2							3							4)

node data adjacency matrix

Permutation of node indices
Since node indexing is arbitrary, we can permute the node indices

31

Permute the columns of the
Node data matrix

Permute both the rows and
column of the Adjacency matrix

We can express this
mathematically with a
permutation matrix, P

𝐏 =

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

𝐗 =
1 2 3 4
5 6 7 8
	9 10 11 12

𝐗- = 𝐗𝐏 =
3 4 2 1
7 8 6 5
	11 12 10 9

𝐀 =

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

1 2

3

4

1
5
9

2
6
10

3
7
11

4
8
12

(3				4				2					1)

(1						2							3							4)

New: (1							2							3						4)
Old: (3							4							2						1)

𝐀- = 𝐏𝐓𝐀𝐏 =

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

node data adjacency matrix

4 3

1

2

1
5
9

2
6
10

3
7
11

4
8
12

Topics

• Basic definition and examples
• Graph representation
• Properties of Adjacency Matrix
• Graph neural network, tasks and loss functions
• Graph convolutional network
• Graph & Node classification
• Edge graphs

32

Graph Neural Network
• A graph neural network is a model that takes the node embeddings X and

the adjacency matrix A as inputs and passes them through a series of 𝐾
layers.
• The node embeddings are updated at each layer to create intermediate

“hidden” representations 𝐇𝐾 before finally computing output embeddings
𝐇𝐾.
• At the start of this network, each column of the input node embeddings 𝐗

just contains information about the node itself.
• At the end, each column of the model output 𝐇𝐾 includes information

about the node and its context within the graph.
• This is like word embeddings passing through a transformer network. These

represent words at the start but represent the word meanings in the
context of the sentence at the end.

33

Graph Level Tasks

Determine
• class categories, e.g. molecule is poisonous
• regression values, e.g. molecure boiling and freezing point
based on graph structure and node embeddings
For graph-level tasks, the output node embeddings are combined (e.g.,
by averaging), and the resulting vector is mapped via a linear
transformation or neural network to a fixed-size vector

34

Graph level classification

35

Binary Classification: Pr 𝑦 = 1 𝐗, 𝐀 = sigmoid[𝛽@ + 𝜔@𝐇@𝟏	/𝑁]

𝐇@

𝜔!is 1×𝐷 row vector
𝛽/ is scalar

𝐇/ is the output embedding matrix

𝟏 is the output embedding matrix

Mean pooling

multi-class
classification

Node level binary classification

36

Pr 𝑦(D) = 1 𝐗, 𝐀 = sigmoid[𝛽@ + 𝜔@𝐡@
(D)]

𝐡/
(1)is the output embedding vector node for 𝑛

Edge prediction
Predict whether edge should exist or not.

37

Pr 𝑦(FD) = 1 𝐗, 𝐀 = sigmoid[𝐡@
F G𝐡@

(D)]

Topics

• Basic definition and examples
• Graph representation
• Properties of Adjacency Matrix
• Graph neural network, tasks and loss functions
• Graph convolutional network
• Graph & Node classification
• Edge graphs

38

Graph convolutional network

These models are convolutional in that they update each node by
aggregating information from nearby nodes.
As such, they induce a relational inductive bias (i.e., a bias toward
prioritizing information from neighbors).

39

A function 𝐹[⋅] with parameters 𝜙" that
takes the node embeddings and
adjacency matrix and outputs new node
embeddings

Equivariance and Invariance

Every layer should be equivariant to index permutations

And for node classification and edge prediction the output should be
invariant to index permutations

40

𝐇HIJ𝐏 = 𝐅[𝐇H𝐏, 𝐏G𝐀𝐏, 𝜙H]

𝑦 = sigmoid 𝛽@ + 𝜔@𝐇@𝟏/𝑁	 = sigmoid 𝛽@ + 𝜔@𝐇@𝐏𝟏/𝑁	

Example Graph Convolution Network (GCN) layer
Aggregate information from neighboring nodes

agg 𝑛, 𝑘 = '
*∈,-[.]

𝐡/
(*)

where ne[𝑛] returns the set of indices of the neighbors of node 𝑛.

41

Example Graph Convolution Network (GCN) layer
Aggregate information from neighboring nodes

agg 𝑛, 𝑘 = '
*∈,-[.]

𝐡/
(*)

where ne[𝑛] returns the set of indices of the neighbors of node 𝑛.

Then a linear transform to the current node vector and the aggregate
for the current node and add a bias.

𝐡/23
(.) = 𝐚 𝛽/ + Ω/ ⋅ 𝐡/

. + Ω/ ⋅ agg[𝑛, 𝑘]

42

Graph convolution layers

43

Input 1st Layer k+1st Layer

Example Graph Convolution Network (GCN) layer
We apply the following equation

𝐡/23
(.) = 𝐚 𝛽/ + Ω/ ⋅ 𝐡/

. + Ω/ ⋅ agg[𝑛, 𝑘]

to the entire node hidden layers matrix, 𝐇/, by noting that 𝐇/𝐀
produces a matrix where the nth column is agg[𝑛, 𝑘].

44

Example Graph Convolution Network (GCN) layer
We apply the following equation

𝐡/23
(.) = 𝐚 𝛽/ + Ω/ ⋅ 𝐡/

. + Ω/ ⋅ agg[𝑛, 𝑘]

to the entire node hidden layers matrix, 𝐇/, by noting that 𝐇/𝐀
produces a matrix where the nth column is agg[𝑛, 𝑘].

45

Note that this is (1) equivariant to permutations, (2) handles arbitrary number of
neighbors, (3) exploits graph structure and (4) share parameters

Topics

• Basic definition and examples
• Graph representation
• Properties of Adjacency Matrix
• Graph neural network, tasks and loss functions
• Graph convolutional network
• Graph & Node classification
• Edge graphs

46

Graph classification example

We can put it all together and add a sigmoid layer

47
You’ll be implementing this in notebook 13.2.

For classification on molecules,

𝑋 ∈ ℝ334×6 : one hot encoding of 118
elements

Ω7 ∈ ℝ8×334: convert to 𝐷-dimensional
embeddings

𝛽/ : is a scalar

𝜔/ : a 1×𝐷 parameters row vectorMean pooling

Inductive vs. Transductive

48

semi-supervised learning: train with
the labeled nodes, then run
inference to determine label for
unlabeled nodes

supervised learning: train with the
labeled graphs and then run
inference on the unlabeled (test)
graphs

Node classification example
Assume transductive binary node classification with
millions of nodes, partially labeled.

Same network body as graph classification, but
different head:

𝐟 𝐗, 𝐀,𝚽 = sigmoid[𝛽4𝟏5 + 𝝎4𝐇4]

No mean pooling. Output is 1×𝑁.
Train with binary cross-entropy loss on nodes with
labels.

49

source

https://images.app.goo.gl/bGW2qZ71dijEtWncA

Node classification example
Assume transductive binary node classification with
millions of nodes, partially labeled.

Challenges:
1. memory limitations: need to store every node

and hidden layer embedding during training
2. how to perform SGD with basically one batch!

50

source

https://images.app.goo.gl/bGW2qZ71dijEtWncA

Solutions: Choosing batches for graphs

1. Choose random subset of nodes

2. Neighborhood sampling

3. Graph partitioning

51

Batches: Random subset

52

You can pick a random batch of labeled nodes at each
training step.

Batches: Random subset

53

𝐡9:3
(1) = 𝐚 𝛽9 + Ω9 ⋅ 𝐡9

1 + Ω9 ⋅ agg[𝑛, 𝑘]

Each node is dependent on the same node in the previous layer and its neighbors because of agg[]

Receptive Field

Batches: Random subset

54

𝐡9:3
(1) = 𝐚 𝛽9 + Ω9 ⋅ 𝐡9

1 + Ω9 ⋅ agg[𝑛, 𝑘]

Each node is dependent on the same node in the previous layer and its neighbors because of agg[].

With many layers and dense connection, it can quickly expand to encompass every node.

Receptive Field

Neighborhood Sampling

55

Random Sampling:

Use all the neighbors

Neighborhood Sampling:

Use max 𝑛 of the neighbors.

Here 𝑛 = 3.

Notebook 13.3

Graph Partitioning

56

Disconnect edges of the original to create maximally
connected disjoint subsets

Split into train, test and validation sets and train just like in the
inductive setting.

Alternatives to Mean Pooling for Node Combinations
• Diagonal enhancement: current node is multiplied by (1 + 𝜖#), where 𝜖# is a learned scalar for

each layer

𝐇#$% = 𝐚 𝛽#𝟏& + 𝛀#𝐇#(𝐀 + (1 + 𝜖#)𝐈)
• Residual connections: Include the current node in the sum

𝐇#$% = 𝐚 𝛽#𝟏& + 𝛀#𝐇#𝐀) + 𝐇#
• Mean aggregation: take average instead of sum of neighbors

agg 𝑛 =
1

ne[𝑛]
E

'∈)*[,]

𝐡'

• Kipf normalization: downweight neighboring nodes with a lot of neighbors

agg 𝑛 = E
'∈)*[,]

ℎ'
ne[𝑛] ne[𝑚]

• Max pool aggregation: element-wise max of all neighbors to current node

agg 𝑛 = max
'∈)*[,]

[𝐡']

57UDL book sections 13.8.1 – 13.8.5

Aggregation by Attention

Weights depend on data at the nodes.
Apply linear transform to current node:

𝐇′! = 𝛽!𝟏" +𝛀!𝐇
Then the similarity 𝑠𝑚𝑛 of each transformed node embedding 𝐡′𝑚 to the
transformed node embedding 𝐡′𝑛 is computed by concatenating the pairs,
taking a dot product with a column vector 𝜙! of learned parameters, and
applying an activation function:

𝑠#$ = a 𝜙!"
𝐡′#
𝐡′$

𝐇!%& = 𝐚[𝐇'
! ⋅ Softmask 𝐒, 𝐀 + 𝐈]

58

Graph Attention

59

Regular graph convolution Graph attention

Graph Attention

60

Regular graph convolution Graph attention

Transformer se

Topics

• Basic definition and examples
• Graph representation
• Properties of Adjacency Matrix
• Graph neural network, tasks and loss functions
• Graph convolutional network
• Graph & Node classification
• Edge graphs

61

Edge Graphs

62

Handled by simple transformation from node graphs.

Next Feedback?

• Reinforcement Learning
• Joint Embedding Predictive Architecture
• Project Presentations

63

Link

https://docs.google.com/forms/d/e/1FAIpQLSep8ThqLupjjyf4Uos5ChIuK8P-GrhEW5Im67vNzD8m8iNtMA/viewform

